‘ackee

hain security

.

nsurance Pools

Audit Report

https://ackeeblockchain.com

Contents

1. Document Revisions
2. Overview
2.1. Ackee Blockchain Security
2.2. Audit Methodology
2.3. Finding Classification
2.4. Review Team
2.5. Disclaimer
3. Executive Summary
Revision 1.0
Revision 1.1
Revision 1.2
4. Findings Summary
Report Revision 1.0
Revision Team
System Overview
Trust Model
Fuzzing
Findings
Report Revision 1.1
Revision Team
Findings
Appendix A: How to cite
Appendix B: Trident Findings
B.1. Implementation Details

B.2. Fuzzing

© ©O© 0w 0o o o o b w

G O O o g oo s s s s s s
0O 0O 0O N &~ &N &N O O 0 0 0o 0o or &

1. Document Revisions

BN
o

Final Report 03.11.2025

—_
—_

Fix Review 20.11.2025

o ||

Fix Review 25.11.2025

2. Overview

This document presents our findings in reviewed contracts.

2.1. Ackee Blockchain Security

Ackee Blockchain Security is an in-house team of security researchers
performing security audits focusing on manual code reviews with extensive
fuzz testing for Ethereum and Solana. Ackee is trusted by top-tier

organizations in web3, securing protocols including Lido, Safe, and Axelar.

We develop open-source security and developer tooling Wake for Ethereum

and Trident for Solana, supported by grants from Coinbase and the Solana

Foundation. Wake and Trident help auditors in the manual review process to

discover hardly recognizable edge-case vulnerabilities.

Our team teaches about blockchain security at the Czech Technical
University in Prague, led by our co-founder and CEQ, Josef Gattermayer, Ph.D.
As the official educational partners of the Solana Foundation, we run the

School of Solana and the Solana Auditors Bootcamp.

Ackee’s mission is to build a stronger blockchain community by sharing our

knowledge.

Ackee Blockchain a.s.
Rohanske nabrezi 717/4

186 00 Prague, Czech Republic
https://ackee.xyz

hello@ackee.xyz

https://github.com/Ackee-Blockchain/wake
https://github.com/Ackee-Blockchain/trident
https://ackee.xyz/school-of-solana
https://ackee.xyz/solana-auditors-bootcamp
https://ackee.xyz
mailto:hello@ackee.xyz

2.2. Audit Methodoloqy

The Ackee Blockchain Security auditing process follows a routine series of

steps:

1. Code review

a. High-level review of the specifications, sources, and instructions
provided to us to make sure we understand the project’s size, scope,

and functionalituy.

b. Detailed manual code review, which is the process of reading the
source code line-by-line to identify potential vulnerabilities. We focus

mainly on common classes of Solana program vulnerabilities, such as:

missing ownership checks, missing signer authorization, signed CPI of
unverified programs, cosplay of Solana accounts, missing rent
exemption assertion, bump seed canonicalization, incorrect accounts
closing, casting truncation, numerical precision errors, arithmetic

overflows or underflows.
c. Comparison of the code and given specifications, ensuring that the
program logic correctly implements everything intended.

d. Review of best practices to improve efficiencuy, clarity, and
maintainability.
2. Testing and automated analysis
a. Run client’s tests to ensure that the system works as expected,

potentially write missing unit or fuzzy tests using our testing

framework Trident.
3. Local deployment + hacking

a. The programs are deployed locally, and we try to attack the system
and break it. There is no specific strateqy here, and each project’s

attack attempts are unique to its implementation.

https://github.com/Ackee-Blockchain/trident

2.3. Finding Classification

A Severity rating of each finding is determined as a synthesis of two sub-

ratings: Impact and Likelihood. It ranges from Informational to Critical.

If we have found a scenario in which an issue is exploitable, it will be assigned
an impact rating of High, ledium, or Low, based on the direness of the
consequences it has on the system. If we haven’t found a way, or the issue is
only exploitable given a change in configuration (system settings or
parameters, such as deployment scripts, compiler configurations, using multi-
signature wallets for owners, etc.) or given a change in the codebase, then it

will be assigned an impact rating of llarning or Info.

Low to High impact issues also have a Likelihood, which measures the

probability of exploitability during runtime.

The full definitions are as follows:

Severity
Likelihood
High Critical
Medium High Medium Low -
Impact Low Medium Low Low -
Warning - - - Warning
Info - - - Info

Table 1. Severity of findings

Impact

« High - Code that activates the issue will lead to undefined or catastrophic

consequences for the system.

« Medium - Code that activates the issue will result in consequences of

serious substance.

« Low - Code that activates the issue will have outcomes on the system that

are either recoverable or don’t jeopardize its regular functioning.

« Warning - The issue cannot be exploited given the current code and/or
configuration, but could be a security vulnerability if these were to
change slightly. If we haven’t found a way to exploit the issue given the
time constraints, it might be marked as a "Warning” or higher, based on our

best estimate of whether it is currently exploitable.

« Info - The issue is on the borderline between code quality and security.
Examples include insufficient logging for critical operations. Another
example is that the issue would be security-related if code or

configuration was to change.
Likelihood

« High - The issue is exploitable by virtually anyone under virtually any
circumstance.

« Medium - Exploiting the issue currently requires non-trivial preconditions.

« Low - Exploiting the issue requires strict preconditions.

2.4. Review Team

The following table lists all contributors to this report. For authors of the
specific revision, see the “Revision team” section in the respective “Report

revision” chapter.

Member’s Name Position

Andrej Lukadovi& Lead Auditor
Felipe Donato Auditor
Josef Gattermayer, Ph.D. Audit Supervisor

2.5. Disclaimer

We’ve put our best effort to find all vulnerabilities in the system, however our
findings shouldn’t be considered as a complete list of all existing issues. The
statements made in this document should not be interpreted as investment
or legal advice, nor should its authors be held accountable for decisions made

based on them.

3. Executive Summary

Onre Protocol is a token exchange platform built on Solana that facilitates

automated market-making through deterministic pricing mechanisms.

Tokenized (re)insurance Pools is a subcomponent of Onre which implements
unique offer-based architecture where the protocol owner (Boss) creates
and manages token exchange offers with time-based pricing vectors that

simulate APR-based growth.

Revision 1.0

Onre engaged Ackee Blockchain Security to perform a security review of Onre
Tokenized (re)insurance Pools with a total time donation of 13 engineering
days in a period between October 15 and November 3, 2025, with Andrej

Lukacovic¢ as the lead auditor.

The audit was performed on the commit 27e9f e7™ and the scope was the

following:

« OnreApp

We began our review by analyzing the protocol architecture and
documentation to understand the offer-based token exchange mechanism
and pricing vector implementation. The initial phase focused on mapping the
trust model, identifying critical functions, and understanding the dual

settlement paths (burn/mint vs vault transfer).

In the second phase, we conducted systematic function-by-function
analysis of all core protocol functions. We developed proof-of-concept
scenarios for critical vulnerabilities while maintaining active communication
with the client to clarify design intentions and discuss findings. During this

phase, we paid special attention to:

https://github.com/onre-finance/onre-sol

« ensuring the fee collection mechanism operated consistently across both

settlement paths;
« validating pricing vector calculations and APR-based growth mathematics;
« analyzing the approval system for replay attacks and binding issues;

« detecting Time-of-Check-Time-of-Use (TOCTOU) vulnerabilities in state

transitions;

« ensuring Token-2022 extension compatibility did not introduce attack

vectors;
- validating access controls and RBAC privilege boundaries;

« examining vault management for potential rug pull vectors; and

ensuring proper validation of user inputs and slippage protection.

In the final phase, we cateqgorized findings by severity, documented exploit

scenarios, and provided actionable remediation recommendations.

For the fuzzing phase, we used the Trident framework to test the protocol’s
behavior under various conditions. We implemented a set of invariants and
flows to ensure the protocol’s behavior was correct. During fuzzing, we
identified one logic error issues (M1) that prevented the Boss from

withdrawing from Token-2022 vault accounts.
Our review resulted in 15 findings, ranging from Info to Medium severity.

The M2 issue instantly invalidates all existing approvals when changing the
approver, with no grace period or migration path, locking multiple users out of

requlated offers simultaneously.

The M4 issue exposes users to attack vectors through malicious Token-2022
extensions: permanent delegate extensions enable token theft, transfer fees

break price calculations, and freeze authority allows indefinite fund lockup.

The M3 issue grants unlimited token minting without supply caps, frequency
limits, or governance controls, enabling arbitrary inflation that devalues all

existing token holders.

The W8 issue enables Time-of-Check-Time-of-Use vulnerability where the
protocol owner can modify fees up to 100% after a user checks the price.
Users submitting transactions expecting 1% fees can be forced to pay 99%,

resulting in direct loss of funds without timelock or protection mechanisms.

The M1 issue prevents the protocol owner from withdrawing from Token-2022
vault accounts. The withdrawal instruction’s incomplete constraints default
to legacy SPL Token, causing transaction failures when accessing Token-
2022 vaults due to PDA address mismatch.

We noticed that the approval system is prone to double-spend attacks with
no implemented limits. Based on the client’s response, this behavior is

intentional, allowing approved users unlimited approvals.

Additionally, the audit identified design flaws including inconsistent APY
displays (correct compound returns displayed but linear growth applied in
cal cul ate_vect or _pri ce for t ake_of f er), vector timing ambiguities enabling
backdated price manipulation, and denial-of-service vectors through

improper validation logic.
Ackee Blockchain Security recommends Onre:
« implement slippage protection and timelocks for all parameter changes to

prevent TOCTOU risk;

« add strict validation for Token-2022 extensions, rejecting tokens with
dangerous extensions such as permanent delegate, transfer fees, and

freeze authority;

« clarify the design intent for vector timing mechanics and implement

consistent validation logic;

« implement proper two-step ownership transfers with acceptance

requirements;

« introduce counter-balance to Boss role to mitigate single point of failure

and issues caused by centralization; and

« address all remaining identified issues.

See Report Revision 1.0 for the system overview and trust model.

Revision 1.1

Onre engaged Ackee Blockchain Security to perform a fix review of the

findings from the previous revision.

The review was performed between November 13 and November 13, 2025 on

the commit 233b005%,

The M2 was partially fixed. The fix limited the approver count to two keys and
updated the validation logic to check against both approvers, ensuring the
addition of a second approver would not break existing approvals. However,
removing both approvers and appointing new ones would still cause existing
approvals to become invalid, which can happen if the rotation is executed in a

wrong manner.

The M3 was fixed by implementing a supply cap set via the boss-only
function. However, the function allowed the maximum supply to be set to O,

removing the cap.

The L1 was fixed by implementing a two-step ownership transfer pattern
requiring the proposed boss to sign the acceptance transaction to complete

the transfer.

The W6 was fixed by placing the old vector cleanup call before attempting to

find empty slots.

The L2 was fixed by implementing upgrade authority validation, ensuring only

the designated deployer could call initialize.

The W/ was fixed by requiring the vector start time to be greater than the

current time for deletion operations.

The W8 was acknowledged. The Onre team considered the current multisig-
based trust model sufficient for their intended use case, while recognizing

that timelock or slippage mechanisms would enhance security.

The M4 was acknowledged. The Onre team committed to validating Token-

2022 extensions and transfer behaviors before listing new tokens.

The W1 was acknowledged. The Onre team stated that the APY getter
intentionally displayed compound interest calculations for informational

purposes and served different functions in their system.

The W2 was fixed by correcting the validation to compare computed start

time values rather than raw base time inputs when ordering vectors.

The W3 was fixed by implementing separate fee accounting, ensuring fees

were transferred to designated recipients rather than destroyed.

The W4 was acknowledged. The Onre team clarified that backdated vectors
were a design feature and that they had removed safequards limiting how far
the base time could be set in the past, allowing price changes at vector

activation without user protection mechanisms.
The |1 was fixed by removing the unnecessary and unused code.

The M1 was fixed by adding token program constraints, ensuring the system

properly handled both SPL and Token-2022 vault accounts.

The W5 was partially fixed by improvements including max supply caps and

enhanced event logging. The Onre team asserted that boss privileges were

controlled through Squads multisig, though this restriction was not enforced

at the contract level.

Even though the fix review did not result in any new findings, we want to
emphasize two warnings that could arise from the unexpected usage of
Token-2022 mints.

The W9 where Token-2022 transfer fees were not accounted for when the
program lacked mint authority, causing users to receive fewer tokens than

calculated while events reported incorrect amounts.

The W10 where transfer-fee tokens broke the protocol’s burn mechanism,

causing all trades to fail for the affected token pairs.

Revision 1.2

Onre engaged Ackee Blockchain Security to perform a fix review of the

findings from the previous revision.

The review was performed between November 21 and November 21, 2025 on

the commit 8b5bh78e.

The W9 and W10 were fixed by preventing take offer from succeeding if the

token out or token in mints have non-zero transfer fees.

The fix, however, introduced an issue, if the fee is increased from O to some
number, users will not be able to take the offer. The client is aware of this and

they acknowledged this potential Denial of Service.

See Report Revision 1.2 for the ...

[1] full commit hash: 27e9f e76385102c4289ca712636f 509920556106
[2] full commit hash: 233b005b33690e3e9f 6f f e866d7e€9d61e9b5679

[3] full commit hash: 8b5b78e4abf 99c154df 50a8f ac60ae2b04aa3ec9

4. Findings Summary

The following section summarizes findings we identified during our review.
Unless overridden for purposes of readability, each finding contains:

e Description

« Exploit scenario (if severity is low or higher)

e Recommendation

Fix (if applicable).

Summary of findings:

Critical High Medium Low Warning Info Total

Table 2. Findings Count by Severity

Findings in detail:

Finding title Severity Reported Status

M1: Missing Medium 1.0 Fixed

token_program constraint

prevents Token-2022 vault
withdrawals

M2: Global Approver Key Medium 1.0 Partially fixed
Rotation can cause system-
wide approval lockout

M3: Boss Unbounded Medium 1.0 Fixed
ONyc Token Minting

M4: Token 2022 is allowed Medium 1.0 Acknowledged

but there is no validation for

its extensions in place

Finding title

L1: Unsafe Single-Step
Ownership Transfer

Severity

Low

Reported
1.0

Status

Fixed

L2: Boss role hijack via

Initialize call frontrun

Low

Fixed

W1: Inconsistent APY-

take offer model

Warning

Acknowledged

W2: Vector Addition

Blocked Due to Incorrect

Validation Logic

Warning

Fixed

\W3: Fees Are Burned
Instead of Being Collected

Warning

Fixed

W4: Backdated Vector

Price

Warning

Acknowledged

\W5: Centralization and
Absence of Standard DeFi

Safeguards

Warning

Partially fixed

W6: Vector Cleanup

Executes After Empty Slot
Check

Warning

Fixed

W7: Deleting Active Single

Vector Causes DoS

Warning

Fixed

W8: Immediate Fee

Changes Enable TOCTOU
Attacks

Warning

Acknowledged

I1: Unnecessary code logic

Info

Fixed

Finding title Severity Reported Status

W9: Token-2022 Transfer Warning 11 Fixed
Fee Causes User to Receive

Less token out

W10: Token-2022 Transfer Warning 11 Fixed

Fee on token in Breaks Burn

Path leading to potential
DoS

Table 3. Table of Findings

Report Revision 1.0

Revision Team

Member’s Name Position

Andrej Lukacovi¢ Lead Auditor
Felipe Donato Auditor
Josef Gattermayer, Ph.D. Audit Supervisor

System Overview

Onre implements deterministic token exchange through time-based pricing
vectors on Solana. Offers are uniquely defined by token pairs with
configurable APR-based price growth calculated at discrete intervals. The
system employs dual settlement paths: burn/mint for program-controlled

tokens and vault transfers for external tokens.

Core components include pricing vectors for time-based valuation, optional
cryptographic approvals for requlated access, vault management for token
custody, and centralized administrative controls. Tokenized (re)lnsurance
Pools uses PDA-controlled intermediary accounts for permissionless

operations and supports both direct and routed token flows.

Integration with Token-2022 enables advanced token features while
introducing extension-based attack vectors. All operations flow through the
Boss authority who maintains unrestricted control over minting, fees, vaults,

and offer parameters.

Trust Model

Onre operates under a fully centralized trust model with the Boss role holding

absolute authority over all critical functions.

Boss Privileges:

Unlimited token minting without caps or restrictions
« Immediate fee modifications up to 100% without user notification

« Unrestricted vault withdrawals at any time

Instant offer closure and parameter changes

Complete control over approval requirements and approver rotation

Authority to enable/disable protocol operations via kill switch

Ability to add and remove admins

Admin Privileges:

« Activate the kill switch

Users must trust that:

The Boss will not mint tokens to devalue holdings

Fees will not be manipulated during transaction execution

« Vault funds will not be withdrawn while offers are active

Offer parameters will remain stable during interactions

The approver key will not be rotated to invalidate existing approvals

Fuzzing

During the audit, we developed manually-quided fuzz tests to evaluate the
protocol’s correctness, security, and robustness. The fuzz test templates are
generated from the IDL created by Anchor and implemented according to
specific requirements. Trident notably supports the specification of flows or

invariant checks.

Flows help the fuzzer achieve better coverage of valid instruction sequences.

Invariant checks, meanwhile, detect unwanted changes during instruction
execution. After successful instruction invocation, multiple invariant checks
can be specified to verify that account contents were updated as expected

during execution.

Throughout the fuzzing process, two common failure types may occur: a
panic during instruction execution or a failure of the specified invariant
check. The former might happen when an unchecked arithmetic overflow is
detected, while the latter occurs when behavior defined as unwanted is

identified (e.g., unauthorized balance changes).

The complete list of implemented flows and invariants is available in Appendix
B.

Findings

The following section presents the list of findings discovered in this revision.

For the complete list of all findings, Go back to Findings Summary

M1: Missing token_program constraint prevents
Token-2022 vault withdrawals

Medium severity issue

Impact: | Medium Likelihood: Medium

Target: | - Type: Logic error

Description

The Onre vault system enables the Boss to deposit and withdraw tokens

through dedicated instructions.

The O f er Vaul t Deposi t instruction creates vault token accounts that store
tokens for later distribution, while O f er Vaul t W t hdr aw enables the Boss to

recover these funds.

The issue arises when attempting to withdraw from Token-2022 vault
accounts. The O f er Vaul t Wt hdr awinstruction’s constraint validation

incorrectly defaults to the legacy Token Program:
Listing 1. Excerpt from offer_withdraw

#[account(
mut,
associated_token::mint = token_mint,
associated_token::authority = vault_authority,

)]

pub vault_token_account: Box<InterfaceAccount<'info, TokenAccount>>,

Without specifying t oken_program the constraint defaults to legacy SPL
Token. Since Associated Token Accounts derive different addresses for
Token-2022 versus legacy tokens, the constraint fails for Token-2022 vaults.

This results in tokens becoming locked and unable to be withdrawn.

Exploit scenario

. Alice, the boss, calls O f er Vaul t Deposi t to deposit tokens into the vault.
Due totheinit_if_needed constraint, the vaul t _t oken_account initializes

with Token-2022 as the t oken_program
2. Protocol operates normally.
3. Alice calls O f er Vaul t Wt hdr awto withdraw tokens from the vault.

4. The withdrawal fails because the t oken_programconstraint defaults to the
legacy SPL Token program, which results in a different Associated Token

Account address.

5. The tokens remain locked in the vault until the program is redeployed with

the fix.

Recommendation

Add the t oken_programconstraint to the vaul t _t oken_account account in the

O ferVaul t Wt hdrawinstruction.

Fix 1.1

The issue was fixed by adding the t oken_pr ogramconstraint to the
vaul t _t oken_account in the O f er Vaul t Wt hdr awinstruction, which ensured
compatibility with Token-2022 vault accounts and enabled successful

withdrawals.

Go back to Findings Summary

M2: Global Approver Key Rotation can cause
system-wide approval lockout

Medium severity issue

Impact: | Low Likelihood: High

Target: | - Type: Logic error

Description

When the boss changes the approver in State, all existing approvals
immediately become invalid because the verification checks against the

current approver, not the one who originally signed the approval.
Listing 2. Excerpt from approver_utils

require!(parsed.pubkey == trusted_pubkey.to_bytes(),
ErrorCode: :WrongAuthority);

Exploit scenario

Alice is the boss.
Bob is a user.

1. Alice updates the approver.

2. Bob who was granted permission for 7 days calls t ake_of fer or

t ake_of f er _perm ssi onl ess.

3. Bob is unable to complete the call as his approval message fails the

validation step.

Recommendation

Store the approver key used for each approval at the time of signing. Modify

the verification logic to check approvals against their original approver key

rather than the current global approver.

Partial solution 1.1

The issue was partially fixed. OnreApp limited the approver count to two
approver keys, and the validation logic was updated to check against both
approver keys (1 and 2), which made the initial addition of a second approver
safe without breaking existing approvals. However, the logic still allows
removing both approvers and appointing new different approvers, which
would again cause existing approvals to become invalid, which can happen if

the rotation is executed in a wrong manner.

Go back to Findings Summary

M3: Boss Unbounded ONyc Token Minting

Medium severity issue

Impact: | Medium Likelihood: Medium
Target: | - Type: Standards
violation

Description

The boss can mint unlimited ONyc tokens without restrictions.

No safeguards prevent arbitrary inflation via unbounded minting, which can
inflate supply, dilute holders, and manipulate any ONyc-dependent

mechanics:

* no max supply check;
» no rate limiting; and

« no time locks or vesting.

Exploit scenario

1. Alice, the boss, decides to mint a large quantity of ONyc tokens.
2. Alice inflates the supply beyond intended limits.

3. Bob, a legitimate holder, loses value in his ONyc holdings due to inflation.

Recommendation

Implement minting restrictions such as maximum supply caps, rate limiting

mechanisms, or time-locked governance processes for minting decisions.

Fix 1.1

The issue was fixed by introducing an on-chain supply cap mechanism, which

included a configurable nax_suppl y parameter in the protocol state, an
administrative function to set this cap, and enforcement logic within the
minting functions that validated the total supply remained within limits
before executing any mint operation. However, if O was passed to

configure_max_suppl y as nax_suppl y, this would remove the cap.

Go back to Findings Summary

M4: Token 2022 is allowed but there is no
validation for its extensions in place

Medium severity issue

Impact: | High Likelihood: Low

Target: | - Type: Code quality

Description

The protocol is Token-2022 compatible through I nt er f aceAccount <M nt > and
I nt er face<Tokenl nt er f ace>. While this architectural decision enables advanced
token functionality, it introduces critical security risks as the protocol lacks

proper validation mechanisms for potential misuse of Token-2022 extensions.

Permanent Delegate Extension: Grants transfer authority to a designated
account. Once activated, the delegate can drain tokens from any holder at
will, bypassing normal ownership controls. This completely undermines the

protocol’s custody assumptions.

Transfer Fee Extension: Enables automatic fee deduction on every transfer. If
misused, can set fees up to 100%, effectively stealing all transferred tokens.
In the offer system, this breaks price calculations and fee assumptions as

users receive less than expected due to hidden fees.

Freeze Authority Extension: Allows freezing of token accounts, preventing
any transfers. The misuse of mint authority can lock users’ funds indefinitely,
creating a denial-of-service condition for all offer operations involving frozen

tokens.

Transfer Hook Extension: Executes arbitrary CPI calls during transfers and can

lead to severe security issues.

The protocol’s burn/mint and vault transfer mechanisms assume standard

token behavior. These extensions violate those assumptions, enabling
scenarios where tokens become unmovable in vaults, or the offer
mathematical model produces incorrect outputs due to incorrect or

incomplete assumptions.

Exploit scenario

1. Alice, the Boss, creates a Token-2022 mint with the Permanent Delegate

extension, setting herself as the irrevocable delegate authority.

2. Alice creates an attractive offer in the protocol: her token (with hidden

delegate) for USDC at below-market rates.

3. Bob, a user, sees the favorable pricing and executes multiple trades,

accumulating 100,000 of Alice’s tokens, believing he owns them securely.

4. Alice exercises her permanent delegate authority to transfer all 100,000
tokens from Bob’s account back to herself, bypassing any approval

requirements.
5. Bob loses his entire position with no recourse.

6. Alice turns the program into a honeypot.

Recommendation

Implement validation mechanisms for Token-2022 extensions to ensure only
safe and expected extensions are allowed, combined with whitelisting of
trustworthy addresses that should be allowed to use critical extensions.
Alternatively, restrict the program to work only with standard SPL tokens if

Token-2022 extensions are not required.

Acknowledgment 1.1

The Onre team acknowledged the issue and stated that they would perform
due diligence and validation before listing any new offers to ensure tokens

behaved as expected.

Go back to Findings Summary

Audit Report | Ackee Blockchain Security 29 of 61

L1: Unsafe Single-Step Ownership Transfer

Low severity issue

Impact: | Low Likelihood: Low
Target: | - Type: Standards
violation
Description

Boss can instantly transfer complete protocol control to any address without

validation or confirmation.
Listing 3. Excerpt from set_boss

pub fn set_boss(ctx: Context<SetBoss>, new_boss: Pubkey) -> Result<()> {
require!(
new_boss != Pubkey::default(),
SetBossErrorCode: :InvalidBossAddress

);

let state = &mut ctx.accounts.state;

let old_boss = ctx.accounts.boss.key(); // Capture old boss before update
state.boss = new_boss;

emit!(BossUpdatedEvent { old_boss, new_boss });

ok(())

Exploit scenario

1. Alice, the boss, calls set _boss and supplies the wrong address to the

function.

2. OnreApp needs to be re-deployed as the higher entity of the RBAC has

been compromised.

Recommendation

Implement a 2-step process of role transfer for critical roles:

1. The current boss proposes a new boss address.

2. The proposed new boss must accept the role by signing the accept

instruction implemented in the program to complete the transfer.

Fix 1.1

The issue was fixed by implementing the recommended two-step process for
transferring the boss role, which required both the current boss to propose a

new boss and the proposed new boss to accept the role.

Go back to Findings Summary

L2: Boss role hijack via Initialize call frontrun

Low severity issue

Impact: | Low Likelihood: Low
Target: | - Type: Standards
violation

Description

The boss role can be hijacked via a frontrun attack on the Initialize function,
which has no proper access control to prevent a malicious caller from
frontrunning the intended boss. The function checks if the boss field has
already been set in the State PDA. If not, it proceeds to initialize the State

PDA’s boss field with whatever address was supplied during the function call.
Listing 4. Excerpt from initialize

if state.boss != Pubkey::default() {
return err!(InitializeErrorCode::BossAlreadySet);

}

Exploit scenario

1. Alice, the legitimate deployer, deploys OnreApp and prepares to call the

Initialize function.

2. Bob, a malicious actor, frontruns Alice’s transaction by submitting an

Initialize call before Alice does.
3. Bob’s transaction executes first, setting him as the boss of the protocol.

4. Alice’s transaction fails or has no effect, leaving Bob in control of the

entire protocol until OnreApp is re-deployed.

Recommendation

Implement proper access control for the Initialize function by restricting who
can call it, such as using a predetermined deployer address or requiring a
signature from an authorized party. Alternatively, use the upgrade_authority

address safe pattern.

Deployer Restriction Pattern: Add a deployer check in the initialize function:

require!(ctx.accounts.boss.key() == EXPECTED_DEPLOYER,
ErrorCode: :UnauthorizedInitializer);

Where EXPECTED_DEPLOYER is a constant pubkey set at compile time.

Program Upgrade Authority Pattern: Leverage Solana’s upgrade authority as

the initializer:

let program_data = ctx.program_id.program_data_address()?;
require!(ctx.accounts.boss.key() == program_data.upgrade_authority,
ErrorCode: :UnauthorizedInitializer);

Fix 1.1

The issue was fixed by implementing the recommended deployer update
authority pattern, which restricted theinitialize function to only be callable

by a designated deployer authority and prevented unauthorized role hijacks.

Go back to Findings Summary

W1: Inconsistent APY-take_offer model

Impact: | Warning Likelihood: N/A

Target: | - Type: Logic error

Description

The function get _apy displays the APY using daily compound interest.
However, when users call the functions t ake_of fer and

take_of fer _perni ssi onl ess, the code calls the function

cal cul ate_vector_price. Despite the comment */// Calculates continuous price
growth using APR-based compound interest”, the formulain

cal cul ate_vector_price implements linear price growth, not compound

interest.

Recommendation

Be consistent with the chosen mathematical model throughout the code.
Either update the function cal cul ate_vect or _pri ce to implement compound
interest instead of linear price growth or update get _apy to reflect the linear

growth model.

Acknowledgment 1.1

The issue was acknowledged, and the Onre team claimed that get _apy
displayed an APY calculation with compound interest for informational

purposes only and served different functions in their system.

Go back to Findings Summary

W2: Vector Addition Blocked Due to Incorrect
Validation Logic

Impact: | Warning Likelihood: N/A
Target: | - Type: Logic error
Description

The protocol incorrectly validates new pricing vectors against historical
timestamps rather than effective timestamps, preventing legitimate vector

additions.

The validation logic compares the input base_t i ne parameter against existing
vector start _tine values, rather than comparing the computed sstart _tine
(which equals nax(base_time, current_tine)). This creates situations where

valid vectors are incorrectly rejected.
Listing 5. Excerpt from add_offer_vector

let start_time = if base_time > current_time {
base_time

} else {
current_time

b

Listing 6. Excerpt from add_offer_vector

if let Some(latest_start_time) = existing_start_times.iter().max() {
require!(
&base_time > latest_start_time,
AddOfferVectorkErrorCode: :InvalidTimeRange
)i

Exploit scenario

1. An existing vector was activated at timestamp 1000.
2. The current time is 2000.

3. Alice, the protocol Boss, attempts to add a vector with base_ti me 900

(which would activate immediately at 2000).

4. The system rejects the valid configuration because 900 < 1000.

Recommendation

Validate new vectors using their computed start _ti ne value rather than the
input base_ti me parameter. Compare max(base_time, current tinme) against
existing vector start _ti ne values to ensure proper chronological ordering of

effective activation times.

Change the validation from:

require!(base_time > latest_start_time, ErrorCode::InvalidTimeRange);

To:

let computed_start_time = max(base_time, current_time);
require!(computed_start_time > latest_start_time, ErrorCode::InvalidTimeRange);

Fix 1.1

The issue was fixed by updating the validation logic to compare start_tine

instead of base_t i me when checking against existing vectors.

Go back to Findings Summary

WW3: Fees Are Burned Instead of Being Collected

Impact: | Warning Likelihood: N/A
Target: | - Type: Logic error
Description

The issue occurs when the program is the mint authority of t oken_i n_nint.

The protocol charges a fee (of fer. f ee_basi s_poi nts) and reports that fee in
logs/events as if it is revenue captured by the boss. However, in the burn/mint
settlement path (when the program is the mint authority of t oken_i n_mi nt),
the entire t oken_i n_anount sent by the user—including the supposed "fee”

portion—is burned, and no party receives it.
Listing 7. Excerpt from token_utils

if controls_token_in_mint {
burn_tokens(

params.token_in_program,
params.token_in_mint,
params.token_in_burn_account,
params.token_in_burn_authority,
params.vault_authority_signer_seeds.unwrap(),
params.token_in_amount,

)?;

Recommendation

Consistently implement fee collection through either a specialized fee vault
for later withdrawal or send the fee directly to the boss address.

Fix 1.1

The issue was fixed by updating the fee handling logic to ensure that fees

were transferred to a designated address instead of being burned when the

program was the mint authority of t oken_i n_ni nt. This was achieved by
adding new fields t oken_i n_net _anount and t oken_i n_f ee_anmount to the Offer

struct.

Go back to Findings Summary

W4: Backdated Vector Price

Impact: | Warning Likelihood: N/A
Target: | - Type: Logic error
Description

The boss can add pricing vectors with past base_t i ne values, causing

immediate retroactive price increases through APR calculation.

The validation logic helps mitigate but does not prevent past base_tine

values. The protocol checks whether the new base_ti ne is non-zero:
Listing 8. Excerpt from add_offer_vector

fn validate_inputs(base_time: u6%4, base_price: u64, price_fix_duration: u64)
-> Result<()> {

// Validate input parameters

require!(base_time > @, AddOfferVectorErrorCode::ZeroValue);

Listing 9. Excerpt from add_offer_vector

if let Some(latest_start_time) = existing_start_times.iter().max() {
require!(
&base_time > latest_start_time,
AddOfferVectorErrorCode::InvalidTimeRange
)i

The boss cannot set base_ti ne too far back when calling add_of f er _vect or

from the second time onwards. The backdating occurs when:

|atest _start _tine < base_tinme < current_tine

The check only ensures base_tine > | atest_start_tinme, not base_tine >

current _tine.

Exploit scenario

1. At timestamp 100, Alice, the boss, adds the first vector with base_time =

100, resultinginstart_tine = nmax(100, 100) = 100.

2. At timestamp 200, Alice adds a second vector with base_tine = 150, which
passes the validation check since 150 > 100 (the existing

| atest _start_tine).
3. The current time is 200, sostart _tinme = max(150, 200) = 200.
4. Thisresultsinstart _tine = 200 and base_tinme = 150, creating a backdated

vector.

The vector activates at timestamp 200 (start_time) but calculates prices
from timestamp 150 (base_time), gaining 50 time units of retroactive APR
growth. The constraint limits how far back the boss can backdate (cannot go

before the latest vector) but does not eliminate backdating entirely.

Recommendation

Validate that base_ti ne is not less than the current timestamp to prevent

retroactive price calculations.

Implement the check:

require!(base_time >= current_time, AddOfferVectorErrorCode::BackdatedVector);

This ensures all pricing vectors start from the current time onward,
eliminating the ability to gain retroactive APR growth through backdating. If
price continuity is needed between vectors, achieve it through proper

base_price adjustment rather than time manipulation.

Acknowledgment 1.1

The issue was acknowledged regarding the backdated vector prices, and the

Onre team claimed that the ability to set base_ti ne in the past relative to
start_tine was an intentional design feature. However, the team had removed
constraints that would have prevented base_ti me from being set arbitrarily far
in the past relative to current _ti me, which enabled sudden and unpredictable
price changes for users. While the mathematical model might have functioned
as designed, the lack of bounds on historical base_ti ne values combined with
the absence of slippage protection exposed users to unexpected price

impacts at vector activation.

Go back to Findings Summary

W5: Centralization and Absence of Standard DeFi
Safequards

Impact: | Warning Likelihood: N/A

Target: | - Type: Logic error

Description
Tokenized (re)insurance Pools lacks standard DeFi safequards that users

typically expect from DeFi protocols.

While the centralized design may be intentional, users should be aware that
the protocol operates without timelock delays, multisig controls, complete
parameter change notifications, or on-chain limits. This creates a trusted
setup where users must have faith in the Boss’s good intentions at all times,

rather than relying on smart contract quarantees.

Recommendation

Implement standard DeFi safequards to reduce trust requirements:

« add timelock delays for critical parameter changes;
« implement multisig controls for administrative functions;
« emit events consistently for all parameter changes to notify users; and

« establish on-chain limits for critical operations such as mint operations.

Partial solution 1.1

The issue was partially fixed, and improvements were made, such as
implementing a Max Supply Cap and comprehensive Event Emission. The Onre
team also claimed to have Multisig Controls, in which the Boss role was
controlled via Squads multisig. However, it is worth noting that nothing on-

chain seemed to enforce multisig.

Go back to Findings Summary

Audit Report | Ackee Blockchain Security 43 of 61

W6: Vector Cleanup Executes After Empty Slot
Check

Impact: | Warning Likelihood: N/A

Target: | - Type: Code quality

Description

The add_of fer _vect or function searches for empty slots before running
cleanup, causing "TooManyVectors” errors even when old inactive vectors

could be removed to free space.
Listing 10. Excerpt from add_offer_vector

offer.vectors[empty_slot_index] = new_vector;

// Clean up old vectors before emitting success message
clean_old_vectors(offer, current_time)?;

Recommendation

Change the order of operation, calling cleanup prior for adding the vector to

the offer.

Fix 1.1

The issue was fixed by updating the add_of f er _vect or function to perform
cleanup before attempting to find empty slots, preventing

TooManyVectors” errors when old inactive vectors could be removed.

Go back to Findings Summary

WW7: Deleting Active Single Vector Causes DoS

Impact: | Warning Likelihood: N/A
Target: | - Type: Code quality
Description

The code prevents deleting the previous vector but allows deleting the
current active vector. The find_active vector_at call will default to the
previous vector. However, the code does not prevent the Boss from deleting
the first vector. When deleting the only active vector, find_active_vector_at
will return Of f er CoreError:: NoActi veVect or, and t ake of f er and

t ake_of fer permi ssi onl ess will be denied service until new vectors are added.
Listing 11. Excerpt from delete_offer_vector

if current_vector.is_ok() {
let prev_vector = find_active_vector_at(offer,
current_vector?.start_time - 1);

if prev_vector.is_ok() {

require!(
prev_vector?.start_time != vector_start_time,
DeleteOfferVectorErrorCode: :CannotDeletePreviousVector
)i
}
}
Recommendation

Check if the vector being deleted is the only active vector before allowing
deletion. Prevent deletion of the sole active vector to maintain system
functionality.

Fix 1.1

The issue was fixed by restricting deletions to only future vectors that had

not activated yet. This maintained offer availability while allowing the boss to

manage scheduled vectors.

Go back to Findings Summary

W8: Immediate Fee Changes Enable TOCTOU
Attacks

Impact: | Warning Likelihood: N/A

Target: | - Type: Code quality

Description

The updat e_of fer _f ee function applies fee changes immediately without any
timelock, grace period, or user slippage protection mechanisms. This results
in users experiencing different fees between the time they initiate a
transaction and when the t ake_of fer and t ake_of f er _perni ssi onl ess

instruction calls execute.

The issue is not meant in the common MEV terms, as the price is not based on
supply and demand but on time and initial setup. In that case, sandwich

attacks cannot happen, but the fee setting can be potentially exploited.

Exploit scenario

1. Alice, a user, observes the current fee rate and prepares a transaction to

take an offer.

2. Bob, the boss, updates the offer fee to a higher rate just before Alice’s

transaction executes.

3. Alice’s transaction executes with the new, higher fee rate instead of the

expected rate, resulting in unexpected costs.

Recommendation

Implement a timelock mechanism for fee changes or add slippage protection
parameters to allow users to specify maximum acceptable fee rates for their

transactions.

Acknowledgment 1.1

The issue was acknowledged, and the Onre team stated that while they
recognized that a timelock or slippage protection mechanism would provide
additional security guarantees, the current trust model with multisig control

was appropriate for the protocol’s design and intended use case.

Go back to Findings Summary

I1: Unnecessary code logic

Impact: | Info Likelihood: N/A

Target: | - Type: Logic error

Description

The source code contains unnecessary logic that should be removed.

The O ferVaul t Aut hority and M nt Aut hori ty accounts are initialized with
allocated space to store bump seeds. Both accounts use Program Derived
Addresses. If authorization is required, the PDAs sign using i nvoke_si gned from
the onre program. The program ID is automatically part of the PDA derivation
process. Storing the bump is unnecessary because PDA derivation is

canonical—the highest possible bump is always used.

The boss account has the writable flag set in multiple unnecessary places.
Multiple instruction contexts, such as Transf er M nt Aut hor i t yToBoss,

Transf er M nt Aut hori t yToPr ogr am AddOf f er Vect or, and Del et eCOf f er Vect or,
contain the boss account as mutable. However, the boss account is not

mutated in these instructions.

The code defines a constant pub const MAX OFFERS: usize = 10;. This
constant is never used throughout the codebase. The code currently has no

offer amount limitation implementation.

Recommendation

Remove the unnecessary allocated space for bump seeds, the writable flags

on immutable accounts, and the unused MAX_OFFERS constant.

Fix 1.1

The issue was fixed by removing the unnecessary code logic such as the

allocated space for bump seeds, the writable flags on immutable accounts,

and the unused MAX_OFFERS constant.

Go back to Findings Summary

Report Revision 1.1

Revision Team

Revision team is the same as in Report Revision 1.0.

Overview

Since there were no comprehensive changes in this revision, the complete

overview is listed in the Executive Summary section Revision 1.1.

Findings

The following section presents the list of findings discovered in this revision.

For the complete list of all findings, Go back to Findings Summary

W9: Token-2022 Transfer Fee Causes User to
Receive Less token_out

Impact: | Warning Likelihood: N/A

Target: | - Type: Logic error

Description

When t oken_out is a Token-2022 mint with the Transf er FeeConfi g extension
and the program does not control the mint authority, the protocol computes
t oken_out _anount assuming vanilla SPL semantics without transfer fees. The
protocol transfers that amount from the vault to the user using
transfer_checked and emits events and logs that report the full

t oken_out _anount. However, Token-2022 transfer fee logic reduces the actual
amount that lands in the user’s account. The protocol fails to account for this
reduction, so users consistently receive fewer t oken_out tokens than the

price math and events indicate.

Exploit scenario

1. Bob, the protocol creator, creates a Token-2022 token sO._T22 with a 2%

transfer fee.
2. The protocol offers: pay USDC and receive SOL_T22.

3. The program does not control the SOL_T22 mint, so it uses a transfer from a

vault.
4. Alice, a user, pays 1000 ustcinto the offer.
5. The protocol math calculates that Alice should receive 2000 SOL_T22.
6. The event logs: token_out _anmount = 2000.
7. The vault transfers 2000 so._T22 to Alice.

8. Token-2022 takes a 2% fee, which equals 40 so._T22.

9. Alice’s wallet receives only 1960 so._T22.

10. The protocol and events claim Alice receives 2000 soL_T22, but her
account balance only increases by 1960 so._T22. The missing 40 SOL_T22 is

routed to the Token-2022 fee receiver as an implicit extra fee.

Recommendation

Choose one of the following approaches:

1. Disallow Token-2022 transfer fee mints: At offer initialization, check
whether t oken_out _mi nt has the Transf er FeeConfi g extension. If it does and
the program lacks mint authority (requiring vault transfers), reject the

offer creation or mark it as unsupported.

2. Support Token-2022 transfer fee mints: Read the transfer fee
configuration and calculate the actual amount the user receives after

fees. Then choose one of these implementation paths:

o increase the transfer amount to compensate for the fee, ensuring the

user receives the full qguoted amount; or

o track and emit both the gross amount (before fees) and net amount
(after fees) in events, and ensure all Ul displays and price calculations

use the net amount that the user actually receives.

Fix 1.2

The issue was fixed by preventing take offer from succeeding if the token

out or token in mints have non-zero transfer fees.

The fix, however, introduced an issue, if the fee is increased from O to some
number, users will not be able to take the offer. The client is aware of this and

they acknowledged this potential Denial of Service.

Go back to Findings Summary

W10: Token-2022 Transfer Fee on token_in
Breaks Burn Path leading to potential DoS

Impact: | Warning Likelihood: N/A

Target: | - Type: Logic error

Description
If t oken_i nis a Token-2022 mint with a transfer fee and the program uses the
burn path (i.e., it controls the mint authority), t ake_of f er can fail. The
protocol:

« transfers the net input amount from the user to the vault

« attempts to burn that same net amount from the vault.
However, Token-2022 transfer fees mean the vault actually receives less than
the amount being burned, creating two failure scenarios:

1. Without pre-funding: Every transaction fails due to insufficient balance.

2. With pre-funding: Each transaction generates a neqgative delta, creating a
cumulative deficit requiring periodic liquidity provisioning to maintain

operational solvency and prevent the burn operation from failing.

Exploit scenario

Scenario A - Immediate Failure (No Pre-funding):

1. Bob, the protocol creator, creates a Token-2022 token USDC T22 with a 2%
transfer fee.

2. The protocol controls the USDC_T22 mint authority, so it uses the burn path

for t oken_in.

3. The protocol offers: pay USDC_T22 and receive SQOL.

. Alice, a user, attempts to take the offer by paying 1000 usDC T22.

. The protocol calculates the net input amount after its own 1% protocol

fee: 990 usDC T22 net, 10 usDC T22 protocol fee.

. The protocol calls transfer_checked to move 990 usDC T22 from Alice’s

account to the vault.

. Because USDC T22 has a 2% Token-2022 transfer fee, the transfer charges
a fee of 19 UsSDC T22, so only 971 uUsDC_T22 actually arrive in the vault.

. The protocol calls burn_checked to burn 990 usDC T22 from the vault,

assuming the vault received the full 990.

. The transaction reverts, causing DoS for subsequent transactions unless

pre-funding of the vault is ensured.

Scenario B - Gradual Potential Failure (With Pre-funding):

. Bob, the protocol creator, creates a Token-2022 token usDC T22 with a 5%

transfer fee.
. Bob pre-funds the burn vault with 10,000 usDC T22 as a buffer.

. The protocol controls the USDC T22 mint authority, so it uses the burn path

for t oken_in.
. The protocol offers: pay USDC T22 and receive SOL.
. Alice, a user, attempts to take the offer by paying 1000 usDC T22.

. The protocol calls transfer_checked to move 1000 usDC_T22 from Alice’s

account to the vault.

. Because USDC_T22 has a 5% Token-2022 transfer fee, only 950 usSDC T22

arrive in the vault.

. The protocol calls bur n_checked to burn 1000 usbcC _T22 from the vault (using
the buffer).

. The burn succeeds but depletes the buffer by 50 UsSDC T22 per trade.

10. After 200 trades of burning more than received (systematic 50 token
deficit per trade), the buffer is exhausted and subsequent trades fail,
causing DoS unless continuous monitoring and liquidity provisioning is

maintained.

Recommendation

Ensure that Token-2022 transfer-fee mints are not used as t oken_i nin the
burn path. Either block them on-chain or force them into the "external /

transfer-only” path.

Fix 1.2

The issue was fixed by preventing take offer from succeeding if the token in

mint has a non-zero transfer fee.

The fix, however, introduced an issue, if the fee is increased from O to some
number, users will not be able to take the offer. The client is aware of this and

they acknowledged this potential Denial of Service.

Go back to Findings Summary

Appendix A: How to cite
Please cite this document as:

Ackee Blockchain Security, Audit Report | Onre: Tokenized (re)insurance Pools,
25.11.2025.

https://ackee.xyz/

Appendix B: Trident Findings

This section lists the outputs from the Trident framework used for fuzz

testing during the audit.

B.l. Implementation Details

Fuzz testing with Trident executes the actual Solana program logic without
approximations or simplifications. The programs are compiled in their
production form and deployed to TridentSVM, ensuring that test results

accurately reflect real-world behavior.

B.2. Fuzzing

The following table lists all implemented execution flows in the Trident

fuzzing framework.

ID Flow Added Status

F1 Test adding offer vectors and taking offers 1.0 Success

with pricing calculations

F2 Test boss authority transfer: propose and 1.0 Success
accept boss operations

F3 Test adding admin to the admin list 1.0 Success

F4 Test removing admin from the admin list 1.0 Success

Table 4. Trident fuzzing flows

The following table lists all implemented invariant checks in the Trident

fuzzing framework.

ID Invariant Added Status

V1 Instruction reverts unexpectedly 1.0 Fail (I\M1)

https://github.com/Ackee-Blockchain/trident
https://github.com/Ackee-Blockchain/trident
https://github.com/Ackee-Blockchain/trident

ID Invariant Added Status

Ive Initialize instruction must set correct boss, 1.0 Success
onyc_mint, and default state values

V3 Initialize permissionless authority instruction 1.0 Success
must set correct name

va Vault deposit operations must preserve 1.0 Fail (M4)
token conservation between boss and vault
accounts

V5 Vault withdrawal operations must preserve 1.0 Fail (M4)
token conservation between vault and boss
accounts

V6 Make offer instruction must initialize offer 1.0 Success
with correct token mints and parameters

V7 Add offer vector instruction must store 1.0 Success
correct pricing parameters

V8 Take offer instruction ensures user pays 1.0 Fail (M4)
exactly token_in_amount

V9 Take offer instruction ensures boss receives 1.0 Fail (M4)
exactly token_in_amount

V10 Take offer instruction ensures user receives 1.0 Fail (M4)
correctly calculated token_out based on
pricing vector

V11 Set admin instruction must add new admin to 1.0 Success
first empty slot

V12 Remove admin instruction must clear admin 1.0 Success
from admin list

V13 Propose boss instruction must set 1.0 Success

proposed_boss field correctly

Invariant Status

V14 Accept boss instruction must transfer boss 1.0 Success

authority and clear proposed_boss

Table 5. Trident fuzzing invariants

Ackee Blockchain a.s.

Rohanske nabrezi 717/4
186 00 Prague
Czech Republic

hello@ackee.xyz

	Onre: Tokenized (re)Insurance Pools
	Contents
	1. Document Revisions
	2. Overview
	2.1. Ackee Blockchain Security
	2.2. Audit Methodology
	2.3. Finding Classification
	2.4. Review Team
	2.5. Disclaimer

	3. Executive Summary
	Revision 1.0
	Revision 1.1
	Revision 1.2

	4. Findings Summary
	Report Revision 1.0
	Revision Team
	System Overview
	Trust Model
	Fuzzing
	Findings

	Report Revision 1.1
	Revision Team
	Findings

	Appendix A: How to cite
	Appendix B: Trident Findings
	B.1. Implementation Details
	B.2. Fuzzing

